

Résultats Intermédiaires - Novembre 2025

Projet IMPACT

Intégrer la mosaïque des paysages cartographiés par télédétection, et le risque épidémique associé, pour une gestion plus agroécologique des maladies réglementées des cultures pérennes

Année de début/fin 2024-2027

Responsable scientifique Frédéric Fabre INRAE

frederic.fabre@inrae.fr

Partenaires:

- INRAE (Institut national de recherche pour l'agriculture, l'alimentation et l'environnement),
- IFV (Institut Français de la Vigne et du Vin),
- GDON SG (GDON du Sauternais et des Graves) et CA33 (Chambre d'Agriculture de la Gironde).

Seront par ailleurs impliqués des partenaires non financés : GDON des BORDEAUX, DRAAF-AUVERGNE-RHONE-ALPES (AURA)/FREDON, FREDON AURA, FREDON Corse et DAAF Réunion.

Mots-clés

Paysage agricole ; Télédétection ; Risque épidémique ; Aide à la décision ; Épidémiologie moléculaire

Type de projet Projet exploratoire,

Montant total du projet 982 879 euros

Montant de la subvention OFB 499 174 euros

Photo de la cicadelle vectrice du phytoplasme de la flavescence dorée, Scaphoideus titanus (crédit INRAE)

Contexte et principaux objectifs

Le projet IMPACT se focalise sur l'épidémiosurveillance de trois maladies réglementées des plantes pérennes transmises par vecteurs, le Huanglongbing (HLB) sur agrumes, la sharka sur prunus et la flavescence dorée (FD) sur vignes. Leur épidémiosurveillance, actuellement centrée sur la culture focale d'intérêt, sera étendue à la diversité des mosaïques paysagères afin de réduire les traitements obligatoires, d'améliorer les stratégies de prospection et de favoriser la gestion préventive des réservoirs.

Nous mobiliserons la **télédétection et la modélisation pour mieux cartographier le risque** des trois maladies ciblées. Un algorithme de classification utilisant des données de télédétection multi-temporelles sera développé pour cartographier à l'espèce les parcelles de vignes et de fruitiers, cultivées ou abandonnées, ainsi que les parcelles nouvellement plantées.

La modélisation statistique spatiale nous permettra ensuite de **quantifier et de prédire le risque associé** à la présence de ces éléments clés dans les paysages agricoles (via leurs emprises, leurs distances aux parcelles d'intérêt) sur l'incidence des maladies dans les cultures focales.

Les cartes de risque ainsi obtenues serviront à orienter les stratégies de prospection et de surveillance. De façon complémentaire, nous intégrerons l'effet de variables paysagères et climatiques dans le processus de déclenchement des traitements insecticides contre le vecteur de la FD.

Finalement, nous mobiliserons également la biologie moléculaire pour **développer un outil caractérisant la diversité génétique des phytoplasmes de la FD**. Nous pourrons ainsi mieux comprendre l'influence des communautés de vecteurs sur les variants de FD circulant dans les paysages et, de façon appliquée, distinguer au vignoble des cas d'infection avec des variants épidémiques versus peu épidémiques, ces derniers ne nécessitant pas de traitements obligatoires.

Résultats attendus, premiers résultats et intérêt pour la Stratégie Ecophyto

Les cartes de risque produites permettront de détecter plus précocement des foyers non prospectés, de prioriser les zones à prospections, de mieux positionner les réseaux d'observation et d'optimiser les dates des traitements obligatoires. Les cartes favoriseront également l'acceptabilité des mesures de lutte en les adaptant aux spécificités de chaque territoire. Si le rôle de certains éléments du paysage s'avère majeur (ex : cas des vignes abandonnées), ce projet fournira des arguments permettant de renforcer l'arsenal réglementaire dédié à leur gestion.

Le génotypage permettra d'éviter les traitements lors de la détection de variants FD peu épidémiques au vignoble comme ceci a déjà été exceptionnellement mis en place sur certains secteurs en Bourgogne, Alsace et Champagne.

Bilan des actions conduites et réalisations à mi-parcours

Action 1 : Améliorer par télédétection la connaissance des parcellaires viticoles et arboricoles

Gestion de la FD. L'objectif est d'identifier les parcelles de vigne abandonnées pour compléter le parcellaire viticole utilisé pour l'épidémiosurveillance. La base de données du GDON des Sauternes et des Graves (2020–2024), dans la région de Bordeaux, a servi de référence. La nomenclature a été simplifiée en trois classes : parcelles cultivées, arrachées ou abandonnées. Seules les parcelles de taille suffisante et intersectant une même tuile Sentinel-2 ont été retenues.

Les images Sentinel-1 (radar) et Sentinel-2 (optique) ont été combinées, filtrées et harmonisées temporellement. Plusieurs modèles de classification ont été testés, ainsi qu'un nouveau modèle conçu dans le cadre du projet, nommé ConDA-Vine. Ce modèle intègre une stratégie d'adaptation de domaine pour prendre en compte des

données satellitaires provenant d'années différentes. ConDA-Vine a montré les meilleures performances, détectant 45 % des parcelles abandonnées.

Le modèle final ConDA-Vine a été entraîné et validé sur les données couvrant le site d'étude des Sauternes et des Graves. Son adaptation au vignoble de Savoie sera testée après une phase d'exploration des données disponibles sur cette seconde région d'étude du projet.

Les perspectives d'amélioration de la classification reposent sur l'exploitation de nouvelles sources de données. Le modèle Alpha Earth Foundations pourrait permettre d'intégrer des caractéristiques climatiques et topographiques supplémentaires. De même, les images optiques PlanetScope offriraient une meilleure résolution spatiale et temporelle que les images Sentinel. Enfin, les données LiDAR apporteraient une information complémentaire sur la hauteur de la végétation.

Gestion de la sharka. L'objectif est de différencier les vergers de Prunus cultivés des autres vergers, et d'identifier plus spécifiquement les vergers de trois ans ou moins, afin de repérer à terme les vergers de Prunus non déclarés par les propriétaires et ainsi compléter le parcellaire arboricole utilisé pour l'épidémiosurveillance.

Un premier jeu de données a été constitué : il comprend le parcellaire des espèces sensibles à la sharka (couche vectorielle des vergers de pêcher, abricotier et prunier) connu de la FREDON AURA pour les années 2014 à 2024, ainsi que des données cartographiques de vergers de pommier et de poirier. Ce jeu a été comparé aux données du Registre Parcellaire Graphique (RPG), révélant l'absence de nombreux vergers d'abricotier, de prunier et de pêcher dans le RPG.

Une première approche a priori a été testée. Elle repose sur un indice de floraison (Enhanced Bloom Index) calculé à partir des bandes RGB des images Sentinel-2, dans le but de détecter la période de floraison des vergers de Prunus (plus précoce que celle des autres groupes botaniques) et ainsi d'identifier une signature spécifique. Cette approche s'étant révélée infructueuse, une approche sans a priori est actuellement en cours, explorant différentes pistes basées sur des algorithmes de classification.

Gestion du HLB. Un jeu de données du parcellaire agrumicole Corse (i.e. couche vectorielle comprenant les polygones représentant les vergers d'agrumes) connu par l'AOP Fruits de Corse a été constitué. Grâce à un financement (issu du budget CIRAD du projet IRIS et du budget INRAE du projet IMPACT) à la FREDON Corse pour partir à la recherche de parcelles hors de la Plaine Orientale, 20 parcelles supplémentaires (qui ne sont pas IGP) ont pu être identifiées. Au total, avec un regroupement des différents sous-jeux collectés, le jeu de données final compte 745 parcelles. Les espèces les plus présentes sont la clémentine et le pomelo. Etant donné la mise à jour régulière de la base de données de l'AOP Fruits de Corse et du nombre réduit de parcelles qu'elle représente, un travail sur la télédétection des vergers d'agrumes n'est pour le moment pas une priorité, l'enjeu n'en justifie pas l'effort.

Action 2 : Intégrer les effets liés à la structure des paysages dans les modèles d'aide à la prospection

Gestion de la FD. L'objectif est ici de préciser le rôle des parcelles de vigne abandonnées sur le risque d'infection par la FD des parcelles cultivées. En lien avec l'action 1, une base de données a été constituée à partir des prospections FD du GDON des Sauternes et des Graves pour les campagnes 2023 et 2024, au cours desquelles les ceps de vigne infectés ont été localisés individuellement. Ces données permettront d'analyser finement le lien statistique entre la présence (distance, étendue) des parcelles de vigne abandonnées et l'infection des ceps par la FD.

Au total, la base de données rassemble 7 093 ceps infectés répartis dans 8 404 parcelles cultivées. Chaque parcelle a ensuite été découpée sur une grille spatiale de 20 m de côté, aboutissant à 167 264 cellules renseignées pour la présence de ceps infectés (variable à expliquer), le cépage, la densité de plantation, la présence de repousses de porte-greffe, le mode de conduite (agriculture conventionnelle ou biologique), la position de la cellule en bordure d'îlot viticole, ainsi que les proportions de vignes cultivées et abandonnées dans des rayons de 100 à 1 000 m autour de leur centroïde. Les analyses statistiques seront conduites au premier trimestre 2026.

Le travail sur la FD dans l'action 2 concerne également la modulation du déclenchement des traitements insecticides obligatoires en fonction de l'effet de la structure du paysage viticole sur les températures. Pour ce faire, l'analyse des données historiques de température a permis de définir, en début de projet, un zonage climatique pour chaque territoire étudié, distinguant des zones fraîches, tempérées ou chaudes. Sur les réseaux de parcelles ainsi constitués, un suivi de l'éclosion et du développement des larves de Scaphoideus titanus a été réalisé durant deux années consécutives, complété par un piégeage des adultes.

Le travail en cours vise désormais à analyser les jeux de données obtenus afin d'élaborer un modèle de développement larvaire et de prédire son évolution sur les deux territoires étudiés, puis à valider cette prédiction au cours de la dernière année du projet.

Action 3 : Développer un outil de génotypage pour tracer la circulation des variants de FD dans les paysages viticoles

Une méthode combinant capture et séquençage Illumina des séquences ADN codantes du phytoplasme FD a été validée sur des échantillons calibrés de vignes de serre et de terrain infectées par le variant majoritaire M54. Un protocole de recherche de mutations pour le génotypage est en cours d'élaboration. Un premier lot d'échantillons de vignes infectées, représentatif des cas isolés et des principaux foyers français identifiés en 2023, est actuellement en cours de séquençage.

Le génotypage par PCR en temps réel VMP-RK d'échantillons d'aulnes prélevés sur huit sites en France a montré des différences de prévalence des variants FD (vectotypes II et III) selon les sites. Le séquençage profond du gène map du phytoplasme, à l'aide d'une nouvelle chimie Illumina « longue lecture », ainsi qu'un protocole d'identification des variants, sont en cours de réalisation.

Les suivis des cicadelles sur aulnes ont été renouvelés sur trois sites en 2025. La détermination des espèces et les analyses de détection et de génotypage des phytoplasmes FD sont actuellement en cours.

Livrables, valorisation et transfert majeurs envisagés

Livrables pour les professionnels :

- Cartographie des éléments clés du paysage liés à l'épidémiologie de la sharka (Occitanie, AURA), du HLB (Corse, Occitanie, Réunion) et de la FD (Bordeaux, Savoie),
- Carte de zonage entomo-climatique représentant le développement de *Scaphoideus titanus*; pour différencier les dates de traitement obligatoire et
- Protocole de génotypage haut débit de la FD pour les laboratoires d'analyse agréés.

Publications & colloques scientifiques:

- Méthodes de cartographie des éléments du paysage et
- Méthodes de génotypes FD et
- Rôles des éléments clés du paysage sur les épidémiologies de la sharka, du HLB et de la FD.

Articles de valorisation/vulgarisation:

- Apports de la télédétection et de la modélisation à l'épidémiosurveillance de la sharka, du HLB et de la FD
- Intérêt des méthodes de génotypes FD et des cartes de zonage pour la réduction des traitements insecticides obligatoires

Présentation à des instances professionnelles ou de décision : en fonction des opportunités en fin de projet.

Livrables, valorisation et transfert majeurs à mi-parcours

La plupart des livrables ne sont pas encore disponible

Publications & colloques scientifiques:

Article soumis. Roussel A., Alleaume S., Billotte A., Fabre F., Ienco D.; "Out-of-year parcel identification using adversarial domain adaptation and multi-temporal satellite imagery to enhance vineyard health monitoring. Soumis à Journal of Digital Earth

Communication congrès international. Salar P., Boury C., Delporte Z., Guichoux E., Blanchandin E., Eveillard S., Malembic-Maher S. & Foissac X. A DNA-capture approach for detection and genome-wide sequencing of Flavescence dorée phytoplasma. 6thEuropean Bois Noir workshop and 1st International Pro-AECOGY conference, UMR-1332 Fruit Biology and Pathology, University of Bordeaux and INRAE, May 2024, Bordeaux (France),pp.96-97.

Financé dans le cadre de la stratégie **écophyto**

