

ACCUEIL **DEPHY** CONCEVOIR SON SYSTÈME > SYSTÈME DIVERVITI - LYCÉE AMBOISE



# Système DiverViti - Lycée Amboise



Année de publication 2019 (mis à jour le 08 jan 2024)

### Carte d'identité du groupe



Structure de l'ingénieur réseau

#### Agriculture biologique

Nom de l'ingénieur réseau

#### DIVERVITI

Date d'entrée dans le réseau

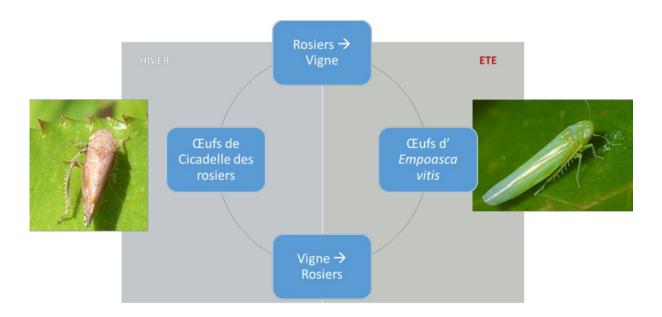
#### Lycée Amboise

-30% IFT hors insecticides et biocontrôle

Objectif de réduction visé

# Présentation du système

#### Conception du système


Le cahier des charges de l'appellation Touraine-Amboise évoluant vers une appellation 100 % Cot, il était important de mettre en place des études sur les bioagresseurs, et en particulier sur la cicadelle verte pouvant impacter de manière importante la qualité de la récolte par la diminution de la photosynthèse.

Des travaux internationaux ayant démontré l'intérêt d'Anagrus atomus sur le parasitisme des œufs d'Empoasca vitis, il a été décidé de créer un nouveau modèle d'implantation de la vigne intégrant des rosiers afin de permettre une parfaite implantation des parasitoïdes d'intérêt.

Anagrus atomus ayant besoin d'un oeuf de cicadelle à féconder pour passer l'hiver, et la cicadelle de la vigne passant l'hiver sous forme de femelles fécondées (cf schéma du cycle ci-dessous), des rosiers ont été plantés



pour abriter les cicadelles, ce qui peut paraître contre-intuitif aux premiers abords ; mais c'est ainsi qu'Anagrus peut parasiter des oeufs d'autres cicadelles.



<u>Mots clés :</u>
Biodiversité fonctionnelle - Lutte par conservation - Parasitisme- Aménagement paysager- Diversification

### Caractéristiques du système

| Type de production         | Cépage | Porte-greffe | Densité | Mode de<br>conduite | Hauteur<br>palissage | Année<br>d'implantation |
|----------------------------|--------|--------------|---------|---------------------|----------------------|-------------------------|
| AOC<br>Touraine<br>Amboise | Cot    | Riparia      | 7500    | AB                  | 1,35m                | 2013                    |



Gestion de l'irrigation : Inexistante

Gestion de la fertilisation : Engrais organique à la plantation

Gestion du sol : Limitation de la concurrence des adventices jusqu'à implantation complète des plantiers

Infrastructures agro-écologiques : Rangs de rosiers intercalés, haies composites



### Objectifs 🛕

| Agronomiques     | <ul> <li>Rendement : 55 hL/ha</li> <li>Qualité : Suffisante pour revendication AOC Touraine Amboise</li> </ul> |
|------------------|----------------------------------------------------------------------------------------------------------------|
| Environnementaux | IFT : Absence d'insecticides30% IFT hors insecticides et hors biocontrôle                                      |



| Maîtrise des<br>bioagresseurs | <ul> <li>Maîtrise des adventices : Imitation de la concurrence des adventices jusqu'à implantation complète des plantiers</li> <li>Maîtrise des maladies : Limiter l'impact sur le rendement</li> <li>Maîtrise ravageurs : Limiter l'impact des grillures sur la maturité</li> </ul> |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Socio-<br>économiques         | Marge brute :     Temps de travail :                                                                                                                                                                                                                                                 |

77

Le mot de l'expérimentateur

\* Texte à compléter

## Stratégies mises en œuvre :

### Gestion des adventices 🛕

Avertissement : seuls les principaux leviers mis en œuvre dans le cadre de l'expérimentation et permettant une réduction de l'utilisation des produits phytosanitaires sont présentés sur ce schéma. Il ne s'agit pas de la stratégie complète de gestion des adventices.

\*(Schéma décisionnel à insérer)

\*Tableau à compléter

| Leviers | Principes d'action | Enseignements |
|---------|--------------------|---------------|
|         |                    |               |
|         |                    |               |
|         |                    |               |



### Gestion des ravageurs 🛕

Avertissement : seuls les principaux leviers mis en œuvre dans le cadre de l'expérimentation et permettant une réduction de l'utilisation des produits phytosanitaires sont présentés sur ce schéma. Il ne s'agit pas de la stratégie complète de gestion des ravageurs.

\*(Schéma décisionnel à insérer)

\*Tableau à compléter

| Leviers | Principes d'action | Enseignements |
|---------|--------------------|---------------|
|         |                    |               |
|         |                    |               |
|         |                    |               |

### Gestion des maladies 🛕

Avertissement : seuls les principaux leviers mis en œuvre dans le cadre de l'expérimentation et permettant une réduction de l'utilisation des produits phytosanitaires sont présentés sur ce schéma. Il ne s'agit pas de la stratégie complète de gestion des maladies.

\*(Schéma décisionnel à insérer)

\*Tableau à compléter

| Leviers | Principes d'action | Enseignements |
|---------|--------------------|---------------|
|         |                    |               |
|         |                    |               |
|         |                    |               |

# Maîtrise des bioagresseurs



| * Tableau <b>à con</b>               | npléter |  |  |  |  |  |
|--------------------------------------|---------|--|--|--|--|--|
|                                      |         |  |  |  |  |  |
|                                      |         |  |  |  |  |  |
|                                      |         |  |  |  |  |  |
|                                      |         |  |  |  |  |  |
|                                      |         |  |  |  |  |  |
| * Texte à compléter                  |         |  |  |  |  |  |
|                                      |         |  |  |  |  |  |
| Performances du système              |         |  |  |  |  |  |
| Performance (sous-titre à compléter) |         |  |  |  |  |  |
| *A compléter (graphique + texte)     |         |  |  |  |  |  |
|                                      |         |  |  |  |  |  |

Evaluation multicritère

\*A compléter (graphique + texte)

Performance ... (sous-titre à compléter)

Performance ... (sous-titre à compléter)

\*A compléter (graphique + texte)

\*A compléter (graphique + texte)

Zoom sur... (titre à compléter)

\* A compléter



| I ranctort on avalatations agriculas |  |
|--------------------------------------|--|
| Transfert en exploitations agricoles |  |
|                                      |  |

\* A compléter

# Pistes d'amélioration, enseignements et perspectives

\* Texte à compléter



# Productions associées à ce système de culture

### Contact



Mikael BOUQUIN

Pilote d'expérimentation - Lycée Agricole

✓ mikael.bouquin@educagri.fr